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FINDING FINITE B2-SEQUENCES WITH LARGER m - am 

ZHENXIANG ZHANG 

ABSTRACT. A sequence of positive integers a, < a2 < ... < am is called a 
(finite) B2-sequence, or a (finite) Sidon sequence, if the pairwise differences are 
all distinct. Let 

K(m) = max(m - a412) 

where the maximum is taken over all m-element B2-sequences. Erdos and Turan 
ask if K(m) = 0(1) . In this paper we give an algorithm, based on the Bose- 
Chowla theorem on finite fields, for finding a lower bound of K(p) and a p- 
element B2-sequence with p-a)a2 equal to this bound, taking O(p3 log2 pK(p)) 
bit operations and requiring O(p logp) storage, where p is a prime. A search 
for lower bounds of K(p) for p < P145 is given, especially K(p145) > 10.279, 
where pi is the ith prime. 

1. INTRODUCTION 

A sequence of positive integers a, < a2 < ... < am is called a (finite) B2- 
sequence, or a (finite) Sidon sequence, if the pairwise differences are all distinct, 
or, in other words, if all the sums ai + aj (i = j is permitted) are different. 
Let m be the maximum number such that am < n. It is known that 

nl/2(l _ ) < m < n1/2 + n1/4 + 1. 

The upper bound is due to Lindstrom [6], improving a result of Erdos and 
Turan [2]. The lower bound is due to Singer [9]. Let 

( 1.1 ) K(m) = max(m - a' ), 
where the maximum is taken over all m-element B2-sequences. Erdos and 
Turan ask whether or not 

(1.2) K(m) = 0(1). 

Erdos offers $500 for settling this equation [3, pp. 65-66]. 
In this paper we do not answer this question, but instead will give an algo- 

rithm for finding a lower bound of K(p) and a p-element B2-sequence with 
p - al/2 equal to this bound, taking O(p3 log2 pK(p)) bit operations and re- 
quiring O(p logp) storage, where p is a prime. A search for lower bounds of 
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K(p) for p < P145 is-given, especially K(p145) > 10.279, where pi is the ith 
prime. 

Our algorithm is based on the Bose-Chowla theorem for finite fields GF(p2). 
A direct search on a computer shows that probably for any k > 0, there would 
exist a p-element B2-sequence with p - al/2 > k. 

2. NOTATIONS AND MAIN RESULTS 

We denote by p a prime, and by pi the ith prime. It is well known that [ 10, 
?37] corresponding to each prime p and natural number r there is a unique (up 
to isomorphism) finite field (Galois field) of pr elements. We denote this field 
by GF(pr). The multiplicative group of the nonzero elements in the Galois 
field GF(pr), denoted by GF*(pr), is cyclic with pr - 1 elements. If d is a 
divisor of r, then GF(pd) is a subfield of GF(pr) and GF*(pd) is a subgroup 
of GF*(pr). 

In this paper we need only the case when r = 2. In this case, GF(p) is a 
subfield of GF(p2) and GF*(p) is a subgroup of GF*(p2). 

Let 0 be a generator of GF*(p2) (denoted by GF*(p2) = (0)), 

(2.1) A(p, 6) ={a: 1 <a< p2, 6Oa - 6 E GF(p)} 

and 

(2.2) A(p, 0) = A(p, 6 ) U {p2}. 

Then A(p, 6) has p + 1 elements, denoted by 1 = al < a2 <... < ap < ap1 = 
p2. Let 

D(p, 6) = {ai+1 - ai: 1 < i < p}, 

d(p, 6) = max{d: d E D(p, 6)}, d(p) =max d(p, 0), 

where the second maximum is taken over all generators of GF*(p2), and define 

k(p) = p -p d(p)* 

With the above notations, and K(m) defined by (1.1), we state our main 
results as the following two theorems. 

Theorem 1. Given k > 0, if there exists a prime p with k(p) > k, or, in 
other words, with d(p) > 2kp - k2, then there exists a p-element J2-sequence 
I = b, < b2 < < bp = p2 - d(p) with 

K(p) > k(p) = p - b12 > k. 

Theorem 2. There exists an algorithm for finding k(p) (or d(p)) and a p- 
element B2-sequence {bi} with p - b'/2 = k(p), taking O(p3 log2 pK(p)) bit 
operations and requiring O(p logp) storage. 

3. PROOF OF THEOREM 1 

To prove Theorem 1, we need four lemmas. The first lemma is just a special 
case of the Bose-Chowla theorem [1] obtained in 1962. Although the proof can 
be found in either [1] or [4, Chapter 2], we rewrite it here, since the idea in the 
proof will be used in the proofs of our theorems. 
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Lemma 3.1 (Bose-Chowla). Both A(p, 6) and A(p, 6) are B2-sequences. 

Proof. Let A(p, 6) = {ai: 1 < i < p} and c(a) = 6a - 0 E GF(p) for a E 
A(p, 6 ). If {i, j} $ {i', j'}, 1I <i< j<p, 1 i'<j'<p,then 

(3.1) (6 + c(ai))(6 + c(aj)) - (6 + c(ai,))(6 + c(aj,)) : 0. 

For the left-hand side of (3.1), considered as a polynomial in 0 with coefficients 
in GF(p), is of degree at most one in 0 and does not vanish identically, since 
there is at most one factorization of a monic polynomial into monic linear 
factors; whilst 0 is of degree 2 over GF(P). Thus, Oai+aj : 6aji+aj, , and then 

(3.2) ai + aj - ai, + aj, mod (p2 - 1). 

Therefore ai + aj : ai, + aj,, i.e., A(p, 6) is a B2-sequence. 
Now let ai, aj, ak E A(p, 0), 1 < i, j, k < p. If ai + aJ = ak +p2, then 

{i, j}${1, k} and 

ai+aj-=ak+1=ak+al mod(p2-1), 

which contradicts (3.2). Thus, A(p, 6) is also a B2-sequence. 5 

Lemma 3.2. Let A(p, 6) = {1= a < a2 < < ap < ap+l p2}. Then 

{ai+1, ai+2, * . , ap , ap+1 = a1 +p2 _ 1, a2 +p2 - 1, ... , ai +p2 - 1} 

is also a B2-sequence for any i with 1 < i < p. 

Proof. This follows easily by (3.2). 5 

Lemma 3.3. If {ai} is a B2-sequence and h < a1, then so is {ai - h}. 

Proof. Obvious. 0 

Lemma 3.4. Let A(p, 6) = {1 = a, < a2 < < ap < ap+1 = p2}. Given t 
with 1 < t < p, let h =at+ - 1. Then 

{1= b <b2 < < bp = p2 -(at+, - at)} 

is a B2-sequence, where 

b_I at+i-h <1 i < pti<p-t, 

at+i-p +p 2 _ 1 - h, p - t < i < p. 

Proof. This follows by Lemmas 3.2 and 3.3. 5 

Remark. In the above lemma, if we choose t such that d(p, 6) = at+, - at, 
then the sequence {bi: 1 < i < p} associated with this t has larger p - b . 

Example 3.1. Let p = 7 and 62 = 0 - 3; then GF*(p2) - (0). We have 
A(p, 6) = {ai} = {1, 2, 5 , 1 1 , 31 , 36, 38 , 49} and d(p, ) =a5- a4 . Let 

b a4+i-30, 1<i<3, 
tai-3 +18, 4< i <7. 

Then {bi} = {1, 6, 8, 19, 20, 23, 29} is a B2-sequence with p -b2 = 
1.614.... 

Example 3.2. Let p = 11 and 62 = 96 - 6; then GF*(p2) - (6). We 
have A(p, 6) = {ai} = {1, 7, 17,32,34,45,52,66,71,74,75, 121} and 



406 ZHENXIANG ZHANG 

d(p, 6 ) = a12-all. Then {bi} = A(p, 6) = {1, 7, 17, 32, 34, 45, 52, 66, 71, 

74, 75} is a B2-sequence with p - b'/2 = 2.339.... 

We are now ready to prove Theorem 1. 

Proof of Theorem 1. Given k > 0, suppose there exists a prime p with k(p) > 
k. Let GF*(p2) = (6) such that d(p) = d(p, 6). Let A(p, 6) = {1 = aI < 
a2 < < ap < ap+1 = p2} and d (p, 6) = at+I -at for some t with 1 < t < p . 
Then the sequence {bi} in Lemma 3.4 is just what we want. 5 

4. PROOF OF THEOREM 2 

In this section, for a given prime p, we denote by order(a) the order of a 
in GF*(p) or in GF*(p2). To prove Theorem 2, we need seven lemmas. 

Lemma 4.1. Let GF*(p2) = (6) and 02 = u6 - v. Then we have 
(I) OP + 0 = u, OP+1 = v; 
(II) Oi 0 GF(p) for 1 < i < p; 
(III) order(v) = p - 1 . 

Proof. (I) This follows from the fact that 6 and OP are two roots of x2 - 

ux - V. 

(II) This follows from the facts that order(6) = p2 - 1 and the order of an 
element of GF*(p) is at most p - 1. 

(III) This follows by (I) and the fact that order(6) = p2 - 1. E 

Lemma 4.2. Let 6 E GF(p2), 62 =-Uu - V with u, v E GF(p) and order(v)= 
p-1,and Oi6 GF(p) for 1<i<p. Then we have GF*(p2)=(0). 

Proof. Since Oi 0 GF(p) for 1 < i < p, we have that 0 and OP are two 
different roots of x2 = ux - v. Thus, OP+l = v. Suppose order(6) = m < 
p2 - 1 . Let m = (p + 1)q + r with 0 < r < p. If r = 0, then order(OP+1) < q < 

p - 1, which contradicts the condition that order(v) = p - 1. If 1 < r < p, 
then 6r = 6m-(p+l)q = (6p+l)-q E GF(p), which contradicts the condition that 
Oi6 GF(p) for 1<i<p. 

Thus, we have order(6) =p2 - 1, i.e., GF*(p2) = (0). 
Lemma 4.3. Let 6 E GF(p2) and 02 = U6 - V with u, v E GF(p). Then a 
necessary and sufficient condition for GF* (p2) = (6) is that 

order(v) = p - 1 and 61 0 GF(p) for 1 < i < p. 

Proof. This follows by Lemmas 4.1 and 4.2. 5 

Lemma 4.4. We have (p2 - 1)/2 +p E A(p, 0). 

Proof. By Lemma 4.1 we have 6(p2_1)/2+p - 0 = -OP - 0 E GF(p). 

Lemma 4.5. Let A(p, 6) = {1 = a, < a2 < ..< ap < ap+I = p2}. Then for 
any ai with p + 1 < ai < p2, there exists some ri with 1 < ri < p such that 
6ri+ai+l-ai - Ori E GF(p). Moreover, we have 6b - ori 0 GF(p) for any b with 
ri < b < ri + ai+1 - ai. 
Proof. Let ai = (p + 1)ti +ri with 0 < ri < p . Since 6p+I, 6ai - 0 E GF(p), we 
have ri $ 0, i.e., 1 < ri < p. Then 6ri+ai+1-ai - or, = 6a,+1-(P+1)t, - 6ai-(p+1)ti = 

(Oa,+, - 6a,)6(P+l)(-tl) E GF(p). 
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Now suppose ob - Ori E GF(p) for some b with ri < b < ri+ ai+ 1 - ai. Let 
bl = b + (p + 1)ti. Then we have ai < b' < aj+j and 

ob - 6a1 - Q(+1)ti(Qb - On) E GF(p), 

which contradicts (2.1) or (2.2). 5 

Lemma 4.6. Fora pair of u, v E GF(p) with order(v) =p-, 1 let 02 = U0-v. 
Then it takes O(p log2 p) bit operations to check if GF* (p2) - (0). Moreover, 
if GF*(p2) = (0) has been checked, then it takes O(p log2 pk(p)) bit operations 
to get d(p, 0) . 
Proof. Let Oi = ui6 - vi with ui, vi E GF(p). Then ul = 1, U2 = u, and 

(4.1) ui+l =uiu-uilv (modp) for i>2. 

By a conventional algorithm [5, Chapter 4], [8, pp. 33-44], it takes O(log2p) bit 
operations for computing each ui. By Lemma 4.3, to check if GF*(p2) = (0), 
we need (only) to compute ui for 1 < i < p and to check that none of them is 
zero. This can be done in O(p log2 p) bit operations. 

Now suppose GF* (p2) = (0) has been checked. We use O(p logp) storage 
tosaveall ui for 1 < i<p. 

For i >p, let i = (p+ 1)t+r, where O < r < p; then 

(4.2) UL = {v; u (modp), 1 < r <p, 

by Lemma 4.1. Since Ur (1 < r < p) are stored, they need not be recomputed. 
The quantity vt can be computed by recurrence: vt = vt-Iv (mod p) . 

By Lemma 4.5 and the above descriptions of the computation of ui, we have 

(4.3) d(p, 6) = max {s - i: s is the least integer such that s > i and u, = u1}. 

We use the following procedure in pseudocode to get d(p, 6): 

BEGIN 

jI - 0; s +- 1; a(l) +- 1; d(p, 6) +- 0; 
For i:= 2 Top - 1 Do a(i) +- 0; 
While j < p Do 

Begin 
s -s+ 1; If(p+ 1)IsThens -s+ 1; 
If s > p Then calculate u, by (4.2); 
If a(u,) > 0 Then 

begin 
j - j + 1; b +- s -a(u,); 
If b > d(p, 6) Then d(p, 6) +- b; 
If s > p Then a(u,) 0 O 

end; 
If s < p Then a(u,) - s 

End 
END; 
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In the procedure the values of a(i) for 1 < i < p are stored and changed 
from time to time. It requires O(p logp) storage, since 0 < a (i) < p. By (4.3), 
to get d (p, 0), the u, are calculated for s at most equal to s = p + d (p, 0) . 
Thus, the procedure will be terminated in O(d(p, 0) log2 p) or O(p log2 pk(p)) 
bit operations. o 

Remark 4.1. In the procedure, as s increases, there may be several values of 
s (< p) for which the us have a same value, say, w . Assign a (w) to be the 
latest value of s with us = w . When we find a larger s with us = w, we get a 
new member of the set of (4.3): b = s - a (w) . The variable j is the number of 
integers in the set of (4.3) which have been compared for taking the maximum 
for d(p, 0). 

Example 4.1. Let p = 7 and 02 = 0 - 3; then GF*(p2) = (0) as in Example 
3.1. Let a(l) = 1 and a(i) = 0 for 2 < i < 7. Then the variables in the 
procedure will be evaluated as follows: 

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
u5 11 5 2 1 2 6 0 3 3 1 6 3 6 4 0 2 2 3 4 2 4 5 

a(us) 1 2 3 4 5 6 7 0 0 0 0 
b 1 3 2 6 5 11 20 
j 0 1 2 3 4 5 6 7 

d(p, 0) 0 1 3 6 11 20 

We obtain, without calculating ai, d(7, 0) = 20, as in Example 3.1. 

Lemma 4.7. Given u, v E GF(p) such that GF*(p2) = (0) and d(p, 0) = d(p) 
with 02 = u - v, it takes O(p2 log2 p) bit operations to get a p-element B2- 
sequence {bi} with bp=p2-d(p). 
Proof. Let ui be defined as in the proof of Lemma 4.6. Then by (2.1) and 
(2.2) we have 

A(p, 0) = {i: 1 < i < p2, ui = 1}. 

By (4.1) and (4.2), it takes O(p2 log2 p) bit operations to calculate ui and to 
check if ui = 1 for 1 < i < p2. After A(p, 0) is known, the time for getting a 
B2-sequence {bi} with bp = p2 -d(p) is negligible (O(p logp) bit operations) 
by Lemma 3.4. 0 

Now we are ready to prove Theorem 2. 

Proof of Theorem 2. Given a prime p, let g = g(p) be the least primitive root 
of p . Let v = gs (modp) for odd s with 1 < s < p - I and (s, p - 1) = 1; 
then order(v) = p - 1 . The number of pairs of u, v with order(v) = p - 1 is 
(p_- l)q(p- 1) <p2, where ~o(.) is the Euler ~9-function. Thus, by Lemma 4.6 it 
takes O(p3 log2 p) bit operations to find all pairs of u, v such that GF* (p2) = 
(0) with 02 = u6 - v. It is clear that the time for calculating gS (mod p) by 
recurrence and for checking if (s, p - 1) = 1 by the Euclidean algorithm [8, 
pp. 58-68] is negligible. 

Since there are in total q9(p2 - 1) < p2 generators in GF* (p2), it takes 
another O(p3 log2 pk(p)) bit operations to find d(p) or k(p) by Lemma 4.6. 

Since k(p) < K(p), the total time for finding k(p) or d (p) is O(p3 log2pK(p)) 
bit operations, while the time for finding a B2-sequence {bi} with p - b112 = 
k(p) is negligible by Lemma 4.7. 
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By the proofs of Lemmas 4.6 and 4.7, we see that the space required is 
O(plogp) bytes. 51 

Remark 4.2. The least primitive root g = g(p) of p is usually found quite fast 
in the manner described in [7, pp. 105-106]. 

5. DESCRIPTION OF THE ALGORITHM 

In this section we will implement the algorithm for finding k(p). To speed 
things up, we need some more lemmas. 

Lemma 5.1. We have D(p, 0) = D(p, W-P). 
Proof. Let h = (p2 - 1)/2 +p; then h E A(p, 6) n A(p, 6-P) by Lemma 4.4. 
Let 

A(p, 6) = {1 = a, < a2 < . < ap < ap+1 = P2} 

and h = at for some t with 1 < t < p. Then 

(o-P)h-(a,-a) - (o-P)h = (o-h+ai-ai _ -h)P 

(_6-P+a, -a, + 0-P)P = -6 ai ) E GF(p) 

for 1 < i < t by Lemma 4.1. Similarly, 

(6-P)h+p2_1-(al-al) _ (6-p)h E GF(p) 

for t < i < p. Thus, 

A(p, 6-P) = {h - (ai - a,): 1 < i < t} u{h +p2-1- (ai - a): t < i < p}; 

therefore, D(p, 0) = D(p, 0-P). O 

Example 5.1. Let p = 7 and 62 - 6 - 3 as in Example 3.1. Then h = 31, 
t = 5, (6 -p)2 = 560-P-5, A(p,6 -P) = {1, 21, 27, 7 0 30 1, 42, 44, 49}, 
D(p, 0) = {1, 3, 6, 20, 5, 2, 11} =D(p, 6-P). 

Example 5.2. Let p = 11 and 62 = 90-6 as in Example 3.2. Then h = 71, t = 
9, (69-P)2 = 70-P-2, A(p, -P) ={1, 6, 20, 27, 38, 40, 55, 65, 71 , 117, 
118, 121}, D(p, 0) = {6, 10, 15, 2, 11, 7, 14, 5, 3, 1, 46}=D(p, 6-P). 

Lemma 5.2. If GF*(p2) = (6), 62 = u6 - v with u, v E GF(p), then the 
minimum polynomial of 6-P over GF(p) is x2 = wx - v-1 for some w E 

GF(p). 
Proof. Let x2 = wx - t be the minimum polynomial of 6-P over GF(p) with 
w, t E GF(p). Then by Lemma 4.1 we have 

t = (6 -P)P+ = (6P+l)-P = (VP)l = v 

Lemma 5.3. Given a prime p, let g = g(p) be the least primitive root of p. 
To find d(p), we need only compare those d(p, 6) with 62 = u6 _ v, u, v E 

GF(p), and 

(5.1) v = gs (modp) for some s with (s, p - 1) = and <s< P2 

Proof. This follows by Lemmas 4.1, 5.1, and 5.2. 5 

Lemma 5.4. We have A(p, 6) = A(p, OP). 
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Proof. This follows from the fact that both 0 and OP have the same minimum 
polynomial over GF(p). n 
Lemma 5.5. Given a prime p, let ml be the number of distinct sets D(p, 6) 
and m2 the number of pairs of u, v E GF(p) such that 

v satisfying (5. 1), if 62 = u6 -_v, then GF* (p2) = (6). 
Then we have ml < m2 = q'(p2 - 1)/4. 
Proof. This follows by Lemmas 5.1, 5.2, 5.3, 5.4 and the fact that the group 
GF*(p2) has q(p2 - 1) generators. 5 

Lemma 5.6. Given a prime p, if GF*(p2) = (0), 6 2 _ u6 - v, with u, v E 
GF(p), then 
(5.2) (u2-1)2 - v is a quadratic nonresidue of p. 
Proof. This follows from the fact that 

X2 _ ux + v = (x - u2-1)2 - ((u2-1)2 _ V) 

is irreducible over GF(p). n 
Remark 5.1. From Lemmas 5.3 and 5.6 we see that, given a prime p, to find 
d(p), we need only, for those pairs of u, v E GF(p) satisfying (5.1) and (5.2), 
check if GF*(p2) = (6) with 6 2 = u6 - v, and find d(p, 6) by Lemma 4.6; 
then take the maximum of them. 

With the above preparation, we describe our algorithm in the following pseu- 
docode: 

REPEAT 
read a prime p and its least primitive root g = g(p) from a disk file; 
d(p) +-O; count -O; 
For each pair of u, v E GF(p) satisfying (5.1) and (5.2) do 

BEGIN 

Check if GF*(p2) = (6) with 62 = u6 - v by Lemma 4.3; 
(cf. the proof of Lemma 4.6) 

If GF*(p2) = (6) with 62 = u6 - v then 
Begin 

count - count + 1; find d(p, 6) by Lemma 4.6; 
If d(p, 6) > d(p) then 

begin 
d(p) - d(p, 6); save u, v 

end 
End 

END; 

k(p) +- /p - d() 

outputp, g, count, d(p), k(p), u, v 
UNTILp =P145; 

Remark 5.2. If count :? ( (p2 - 1)/4 for some p in the output, then there must 
be some errors in the program by Lemma 5.5. 
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6. NUMERICAL RESULTS: k(p) FOR P < P145 

On an SCC486 (a compatible IBM PC/AT486), it takes about 120 hours to 
get k(p) and related values for p < P145 in Table 1. 

TABLE 1 

Pi g(pi) count d(pi) k(p) i v 

3 5 2 2 13 1.535--- 1 2 
4 7 3 4 20 1.614--- 1 3 
5 11 2 8 46 2.339 ... 7 2 

6 13 2 12 57 2.416--- 2 6 
7 17 3 24 89 2.857--- 9 5 
8 19 2 24 103 2.937 ... 9 13 
9 23 5 40 140 3.276--- 4 20 

10 29 2 48 201 3.701 . 7 19 

11 31 3 64 195 3.323 ... 1 24 
12 37 2 108 250 3.548--- 6 32 
13 41 6 96 307 3.932 - 15 19 
14 43 3 120 341 4.167--- 4 19 
15 47 5 176 404 4.514 ... 11 23 

16 53 2 216 429 4.214 ... 44 26 
17 59 2 224 439 3.845 ... 7 42 
18 61 2 240 586 5.008--- 58 10 
19 67 2 320 617 4.774 ... 12 18 
20 71 7 288 699 5.106 ... 6 59 

21 73 5 432 646 4.567--- 22 5 
22 79 3 384 717 4.676--- 61 74 
23 83 2 480 793 4.923 - 76 15 
24 89 3 480 818 4.720 .. 23 59 
25 97 5 672 1000 5.299 -- 63 58 

26 101 2 640 1024 5.203 6 53 
27 103 5 768 912 4.526 ... 11 86 
28 107 2 936 1018 4.867 56 72 
29 109 6 720 1128 5.303. 3 40 
30 113 3 864 1121 5.074--- 108 43 

31 127 3 1152 1364 5.488 23 109 
32 131 2 960 1271 4.944 ... 10 119 
33 137 3 1408 1417 5.273 ... 92 6 
34 139 2 1056 1741 6.410 74 26 
35 149 2 1440 1618 5.532--- 109 51 

36 151 6 1440 1874 6.338 - 135 140 
37 157 5 1872 1649 5.342--- 93 142 
38 163 2 2160 1737 5.418 ... 76 122 
39 167 5 1968 2279 6.968 -- 21 159 
40 173 2 2352 1997 5.871 ... 89 46 

41 179 2 2112 2055 5.835 ... 88 165 
42 181 2 1728 2151 6.042 ... 126 128 
43 191 19 2304 2306 6.135 ... 158 63 
44 193 5 3072 2460 6.481 -- 116 153 
45 197 2 2520 2283 5.882--- 68 179 

46 199 3 2400 2283 5.821 -- 143 148 
47 211 2 2496 2888 6.958 - 22 174 
48 223 3 3456 2930 6.669 200 20 
49 227 2 4032 3093 6.918 108 66 
50 229 6 3168 3527 7.834--- 80 194 

51 233 3 4032 2899 6.306--- 98 155 
52 239 7 3072 2977 6.311 --- 115 173 
53 241 7 3520 3527 7.432 ... 116 68 
54 251 6 3600 3059 6.169 ... 208 202 
55 257 3 5376 3413 6.728--- 120 132 
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TABLE 1 (continued) 
i p. g(p.) count d(p ) k(p. ) u v 

56 263 5 5200 3467 6.675 ... 113 194 
57 269 2 4752 3249 6.108--- 7 132 
58 271 6 4608 3502 6.540 - 203 210 
59 277 5 60'2 3567 6.515--- 17 179 
60 281 3 4416 3809 6.861 ... 265 42 

61 283 3 6440 3838 6.864--- 191 226 
62 293 2 6048 3891 6.716--- 168 42 
63 307 5 5760 4589 7.567 ... 245 267 
64 311 17 5760 4455 7.246 *-- 225 103 
65 313 10 7488 4208 6.795--- 178 14 

66 317 2 8112 4222 6.730--- 123 237 
67 331 3 6560 4587 7.003 5 59 90 
68 337 10 7488 4661 6.987 ... 116 248 
69 347 2 9632 5226 7.613 ... 54 264 
70 349 2 6720 4429 6.404--- 242 166 

71 353 3 9280 5229 7.48 5--- 6 212 
72 359 7 8544 5270 7.416--- 292 183 
73 367 6 10560 5512 7.587--- 121 341 
74 373 2 9600 5408 7.321 ... 64 135 
7 5 379 2 7776 499 5 6.648 ... 242 284 

76 383 5 12160 5223 6.880 ... 60 140 
77 389 2 9216 5712 7.412--- 219 375 
78 397 5 11880 6649 8.464 ... 222 46 
79 401 3 10560 5577 7.015--- 10 19 
80 409 21 10240 6290 7.763 --- 90 132 

8 1 419 2 8640 6141 7.393 ... 219 96 
82 421 2 10080 6102 7.310--- 231 39 
8 3 431 7 12096 6582 7.704 ... 57 426 
84 433 5 12960 6403 7.457 *-- 419 201 
8 5 439 1 5 11520 6517 7.486 *-- 1 1 74 

86 443 2 13824 7167 8.164--- 82 332 
87 449 3 1 1520 6830 7.671 ... 237 166 
88 457 13 16416 6562 7.236--- 92 328 
89 461 2 10560 6647 7.266--- 198 251 
90 463 3 13440 6512 7.086--- 265 349 

91 467 2 16704 6761 7.295--- 339 295 
92 479 13 15232 8175 8.610--- 176 13 
9 3 487 3 19440 7606 7.872 ... 106 368 
94 491 2 13440 7584 7.784 ... 267 447 
95 499 7 16400 8624 8.717--- 208 417 

96 503 5 18000 7206 7.214-.. 99 266 
97 509 2 16128 7608 7.529 ... 38 440 
98 521 3 16128 7779 7.5 19 ... 282 239 
99 523 2 21840 8655 8.340--- 520 446 

100 541 2 19440 8535 7.946--- 139 2 

101 547 2 19584 8626 7.942 .. 510 241 
102 557 2 24840 8541 7.720 ... 466 346 
103 563 2 25760 9215 8.244--- 234 388 
104 569 3 20160 8655 7.656 ... 200 149 
105 571 3 17280 9260 8.166--- 473 537 

106 577 5 26112 8991 7.844 ... 326 137 
107 587 2 24528 10535 9.043 *-- 188 1 1 
108 593 3 25920 9371 7.954--- 417 41 
109 599 7 21120 9467 7.955 ... 329 62 
110 601 7 20160 10156 8.509--- 72 317 

111 607 3 28800 11562 9.599 *-- 263 345 
112 613 2 29376 9583 7.866--- 416 362 
113 617 3 24480 10881 8.881--- 542 12 
114 619 2 24480 10272 8. 53 ... 120 488 
115 631 3 22464 9804 7.817-.. 411 270 
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TABLE 1 (continued) 
T Pi g(pi) count d(p ) k(p i) u v 

116 641 3 27136 12084 9.496*.. 461 384 
117 643 11 27984 11568 9.059 -- 251 126 
118 647 5 31104 12778 9.951 488 511 
119 653 2 34992 11480 8.850 505 399 
120 659 2 22080 10055 7.673 370 594 

121 661 2 26400 10021 7.624*.. 643 333 
122 673 5 32256 12220 9.140 656 290 
123 677 2 34944 11634 8.647.. 348 515 
124 683 5 32400 11277 8.305*.. 286 79 
125 691 3 30272 11769 8.569 * 501 507 

126 701 2 25920 12928 9.282 458 523 
127 709 2 32480 11043 7.830 661 282 
128 719 1 1 34368 12114 8.474'* 80 674 
129 727 5 31680 12768 8.834*.. 300 475 
130 733 6 43920 12512 8.585 187 92 

131 739 3 34560 11965 8.140 669 590 
132 743 5 37440 13163 8.911 . 700 467 
133 751 3 36800 12105 8.102. 500 257 
134 757 2 40824 13094 8.698 132 656 
135 761 6 36288 14077 9.305 625 198 

136 769 1 1 30720 12146 7.938 ^ 462 247 
137 773 2 48384 14417 9.382 143 273 
138 787 2 50960 13937 8.904.. 452 588 
139 797 2 42768 13333 8.408 480 537 
140 809 3 43200 13307 8.266*.. 82 653 

141 811 3 36288 14428 8.944 625 346 
142 821 2 43520 13836 8.470 186 233 
143 823 3 55488 15272 9.331 763 221 
144 827 2 45936 13987 8.500 - 87 708 
145 829 2 43296 16938 10.279 825 306 

7. SUMMARY 

Since k(p145) = 10.279... and P145 = 829, there exists an 829-element B2- 

sequence {bi} with 829 - b 12 > 10.279. By the proofs of Theorems 1 and 829 
2, it is easy (actually it takes 4'16" on an IBM PC/XT) to get all elements of 
{bi}. To save space, we give only the first and the last ten elements as follows: 

1 1738 3183 3419 4949 5710 6177 6522 7229 8380 

664432 664834 665138 665902 666010 667081 667206 668286 670235 670303 

From Table 1 in ?6, it is reasonable to conjecture that 

(7.1) given k > 0, there exists an integer m such that K(m) > k. 

Clearly, (7.1) contradicts (1.2). We hope that in a future paper, either (7.1) or 
(1.2) will be proved (i.e., the other will be disproved). 
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